Central Differencing Based Numerical Schemes for Hyperbolic Conservation Laws with Relaxation Terms

نویسنده

  • Lorenzo Pareschi
چکیده

Many applications involve hyperbolic systems of conservation laws with source terms. The numerical solution of such systems may be challenging, especially when the source terms are stiff. Uniform accuracy with respect to the stiffness parameter is a highly desirable property but it is, in general, very difficult to achieve using underresolved discretizations. For such problems we develop different second order uniformly accurate high-resolution nonoscillatory central schemes. The schemes retain the simplicity of central schemes for hyperbolic conservation laws and avoid the use of Riemann solvers. In particular, we show that these schemes possess a discrete analogue of the continuous asymptotic limit and are able to capture the correct behavior even if the initial layer and the small relaxation time are not numerically resolved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Non-oscillatory Central Differencing for Hyperbolic Conservation Laws

Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the “direction of the wind.” Instead, we propose to use as a building block the mor...

متن کامل

Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms

We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. ...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws

We propose a class of finite element schemes for systems of hyperbolic conservation laws that are based on finite element discretizations of appropriate relaxation models. We consider both semidiscrete and fully discrete finite element schemes and show that the schemes are stable and, when the compensated compactness theory is applicable, do converge to a weak solution of the hyperbolic system....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001